Mangrove ecosystems and shrimp farming interactions along tropical coastlines; a selective review

WAS Las Vegas – 24 February 2016

Frank David;

Pierre Taillardat; Cyril Marchand; Nathalie Molnar; Tarik Meziane

UMR BOREA 7208 - Muséum National d'Histoire Naturelle de Paris

Institut de recherche pour le développement

Why am I here today ?

Team 6: Source and transfer of organic matter in aquatic ecosystems

To Ho Chi Minh City (30 km); 8M inhabitants

PhD Subject :

Impact of shrimp farming on trophic webs of Can Gio Mangrove (southern Vietnam)

Source: McDonough et al. 2014

Why should tropical coastlines be impacted by shrimp farming ?

An overview of shrimp farming impacts along tropical coastlines:

- **1. Deforestation and carbon release**
- 2. Eutrophication and change in community structure
- 3. Release of antibiotics and soil abilities change

• Aboveground Biomass along tropical coastlines

Hutchison et al. 2014

• Mangroves deforestation in SEA (2000-2012)

114,424 ha deforested / 30% replaced by aquaculture

Colored from Richards & Friess 2016

• Carbon stocks in tropical ecosystems

Alongi et al. 2014

• Brazil (northeast coast)

- Higher release of CO₂ in impacted mangroves
- Lower OC content in soils of impacted mangroves

Shrimp farming contributes to CO₂ increase in the atmosphere

- Because of deforestation
- Due to changes in soil processes of adjacent mangroves

An overview of shrimp farming impacts along tropical coastlines:

- **1. Deforestation and carbon release**
- 2. Eutrophication and change in community structure
- 3. Release of antibiotics and soil abilities change

12

- Seasonal variations
- Higher concentrations in impacted mangrove

13

- Chlorophyll *a* 3 to 12 times higher in impacted mangrove
- Difference maintained throughout seasons

• Saint Vincent Bay (southern New Caledonia)

Bacterial indicators fatty acids

Mangrove surface sediments

Non Active Period

Active Period

- 18:1ω7 + 15:0 iso-anteiso + 17:0 iso-anteiso = Bacterial indicators
- Higher concentration during active period

Colored from Aschenbroich et al. 2015

• Saint Vincent Bay (southern New Caledonia)

Diatom indicators fatty acids Mangrove surface sediments

Colored from Aschenbroich et al. 2015

Non Active Period

Active Period

- $16:1\omega7 + 20:5\omega3 =$ **Diatom indicators**
- Higher concentration during active period

Eutrophication and change in community structure

• Saint Vincent Bay (southern New Caledonia)

Micro-phytobenthos indicators fatty acids

Mangrove surface sediments

Non Active Period

Active Period

- $18:3\omega6 + 20:3\omega6 =$ **Micro-phytobenthic indicators**
- Lower concentration during active period

=> Change in phytobenthic communities

Colored from Aschenbroich et al. 2015

Shrimp farming affects soils processes of adjacent mangroves

- Through high nutrient release
- By the release of organic compounds such as lipids

An overview of shrimp farming impacts along tropical coastlines:

- **1. Deforestation and carbon release**
- 2. Eutrophication and change in community structure
- 3. Release of antibiotics and soil abilities change

• Concentration of 4 antibiotics

Sampling strategy

Intensive Ponds Extensive Ponds 4.5 2.0 ♦ EP-L1 4.0 concentration (ppm) ♦ IP-L1 ■ IP-L2 Average antibiotics concentration (ppm) Average antibiotics - e e • 3.5 1.5 EP-L2 ▲ IP-L3 \times IP-L4 3.0 ÷ ∎ ₹ 2.5 -,· 1.0 . 2.0 т -----.... 3. 1.5 0.5 - 1. 1.0 € ŧ ¥ 0.0 0.5 0.0 SMX NFXC SMX NFXC OXLA TMP OXLA TMP NFXC SMX NFXC SMX OXLA OXLA TMP TMP Surface layer Bottom layer Surface layer Bottom layer (a) (b) Antibiotics Antibiotics

Water concentration

Le & Munekage 2004

- NFXC norfloxacin
- **OXLA** oxolinic acid
- **TMP** trimethoprim
- **SMX** sulfamethoxazole

Adjacent canals concentration

- NFXC norfloxacinOXLA oxolinic acidTMP trimethoprim
- TMP trimethoprim
- **SMX** sulfamethoxazole
- Values highly variable
- Clear accumulation in sediments (100 X)

23

• Vietnam (4 locations)

Intensive Ponds

Adjacent Canals

Experimental effect (SMX sulfamethoxazole)

Underwood et al. 2011 ; Al-Ahmad et al. 1999

- reduced growth rates and nitrate reduction rate
- Pseudomonas putida inhibited by 50% (IC50)

- reduced growth rates and nitrate reduction rate
- Pseudomonas putida inhibited by 50% (IC50)

- Sediments 100 times more concentrated than waters
- Unknown effects on microbial communities

Shrimp farming may affect soils processes of adjacent mangroves

• By the release of antibiotics that accumulate in sediments

An overview of shrimp farming impacts along tropical coastlines:

CO² release

27

Finally, what could be alternatives?

Today

• Produce on plastic liners to stop abandoning ponds

Antibiotics accumulation

•

Reduce density and use antibiotics only when needed

28

•

Select resisting strains or domesticate new species

29

• References

- Al-Ahmad, A., Daschner, F.D., Kümmerer, K., 1999. Biodegradability of cefotiam, ciprofloxacin, meropenem, penicillin G, and sulfamethoxazole and inhibition of waste water bacteria. *Archives of environmental contamination* and toxicology 37, 158–163.
- Alongi, D.M., 2014. Carbon Cycling and Storage in Mangrove Forests. *Annual Review of Marine Science* 6, 195–219.
- Aschenbroich, A., Marchand, C., Molnar, N., Deborde, J., Hubas, C., Rybarczyk, H., Meziane, T., 2015. Spatiotemporal variations in the composition of organic matter in surface sediments of a mangrove receiving shrimp farm effluents (New Caledonia). *Science of The Total Environment* 512, 296–307.
- Avnimelech, Y., Ritvo, G., 2003. Shrimp and fish pond soils: processes and management. Aquaculture 220, 549–567.
- Hutchison, J., Manica, A., Swetnam, R., Balmford, A., Spalding, M., 2014. Predicting global patterns in mangrove forest biomass. *Conservation Letters* 7, 233–240.
- Le, T.X., Munekage, Y., 2004. Residues of selected antibiotics in water and mud from shrimp ponds in mangrove areas in Viet Nam. *Marine Pollution Bulletin* 49, 922–929.
- Molnar, N., Marchand, C., Deborde, J., Patrona, L.D., Meziane, T., 2014. Seasonal Pattern of the Biogeochemical Properties of Mangrove Sediments Receiving Shrimp Farm Effluents (New Caledonia). *Journal of Aquaculture Research and Development* 5, 262.
- Molnar, N., Welsh, D.T., Marchand, C., Deborde, J., Meziane, T., 2013. Impacts of shrimp farm effluent on water quality, benthic metabolism and N-dynamics in a mangrove forest (New Caledonia). *Estuarine, Coastal and Shelf Science* 117, 12–21.
- Richards, D.R., Friess, D.A., 2016. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. *Proceedings of the National Academy of Sciences* 113, 344–349.
- Suárez-Abelenda, M., Ferreira, T.O., Camps-Arbestain, M., Rivera-Monroy, V.H., Macías, F., Nóbrega, G.N., Otero, X.L., 2014. The effect of nutrient-rich effluents from shrimp farming on mangrove soil carbon storage and geochemistry under semi-arid climate conditions in northern Brazil. *Geoderma* 213, 551–559.
- Underwood, J.C., Harvey, R.W., Metge, D.W., Repert, D.A., Baumgartner, L.K., Smith, R.L., Roane, T.M., Barber, L.B., 2011. Effects of the Antimicrobial Sulfamethoxazole on Groundwater Bacterial Enrichment. *Environmental Science* & *Technology* 45, 3096–3101.

Thank you for your attention